

THIN-FILM SOLAR CELLS BASED ON ANTIMONY CHALCOGENIDES THROUGH CHEMICAL BATH DEPOSITION

SIMPOSIO INTERDISCIPLINARIO

EN MATERIALES

A. Nuñez-Rodríguez¹, J. Escorcia-García²

¹ CINVESTAV Unidad Saltillo, Ingeniería Cerámica, México.
² CONACYT-CINVESTAV Unidad Saltillo, Ingeniería Cerámica, México.

INTRODUCTION

The search of new semiconductor materials for electrical energy generation constituted by non-toxic and abundant elements using inexpensive processes has been investigated in recent years. Antimony chalcogenides like antimony sulfide (Sb₂S₃) and antimony selenide (Sb₂Se₃) have been positioned as novel and attractive materials for the absorber layer in solar cells due to their interesting optoelectronic properties. Sb₂S₃ has high optical bandgap (E_g =1.5-1.8 eV) but low electrical photoconductivity (10⁻⁸-10⁻⁶ Ω ⁻¹ cm⁻¹). On the contrary, Sb₂Se₃ possesses E_g of 1.3-1.7 eV and higher photoconductivity than Sb₂S₃ (>10⁻⁶ Ω ⁻¹ cm⁻¹). For this reason, the evaluation of Sb₂S₃ in solar cells gives high open-circuit voltage (V_{oc}) with low short-circuit current densities (J_{sc}), while Sb₂Se₃ produces low V_{oc} and high J_{sc} values. Therefore, the implementation of a solid solution constituted by antimony sulfide-selenide, Sb₂(Se_xS_{1-x})₃, will optimize the chemical composition of the absorber to obtain both high V_{oc} and J_{sc} values in the resulting solar cells.

